
A Fast Geometric Algorithm for Finding the Minimum Distance

Between Two Convex Hulls

Dougsoo Kaown and Jianguo Liu

Abstract— The problem of computing the minimum distance
between two convex hulls has applications to many areas
including robotics, computer graphics, path planning, and data
classification. In this paper, we propose and investigate a new
algorithm (based on the MDM algorithm) for finding the mini-
mum distance between two convex hulls. The new algorithm is
simple to understand and easy to implement. The convergence
of the algorithm is proved and the performance of the algorithm
is compared with the state-of-art techniques. For randomly
generated data sets, the new algorithm is more efficient than
some of the best available algorithms and implementations, in
particular when the number of points and the dimensions are
large.

I. INTRODUCTION

Finding the minimum distance between two convex hulls

has important real-world applications. The fields of robotics,

animation, computer graphics and path planning all use this

distance calculation. In robotics, for example, the distance

between two convex hulls is calculated to determine the path

of the robot so that it can avoid collisions. Many algorithms

designed for minimum distance can also be applied to data

classification problems.

The problem of finding the minimum distance between

two convex hulls, also known as the nearest point prob-

lem (NPP) (see, e.g., Keerthi, Shevade, Bhattacharyya, and

Murthy [7]), can be formulated as follows:

Given two sets of points X = {x1, x2 . . . , xm} and Y =
{y1, y2, . . . , yn} in ℜl. Let the convex hulls be

U = {
m

∑

i=1

αixi :

m
∑

i=1

αi = 1, αi ≥ 0 (1 ≤ i ≤ m) }

and

V = {
n

∑

j=1

βjyj :

n
∑

j=1

βj = 1, βj ≥ 0 (1 ≤ j ≤ n) },

respectively. We wish to solve

min { ‖u− v‖ : u ∈ U, v ∈ V } (NPP)

where ‖ · ‖ denotes the general 2-norm in ℜl.

This problem can be reformulated as a closely related

minimum norm problem (MNP), i.e., finding the point in

a convex hull that is nearest to the origin:

min { ‖z‖ : z ∈ Z }. (MNP)

Dougsoo Kaown is with the Department of Mathematics, University of
North Texas, Denton, TX 75077, USA (dk0008@unt.edu)

Jianguo Liu is with the Department of Mathematics, University of North
Texas, Denton, TX 75077, USA (jgliu@unt.edu)

where Z denotes the Minkowski set difference of U and V
(Lay [8]):

Z = { z : z = u− v, u ∈ U, v ∈ V }.
In fact, every point z ∈ Z can be expressed as a

convex combination of the difference vectors xi − yj (i =
1, 2, . . . ,m, j = 1, 2, . . . , n):

z = u− v

=
m

∑

i=1

αixi −
n

∑

j=1

βjyj

= (

n
∑

j=1

βj)

m
∑

i=1

αixi − (

m
∑

i=1

αi)

n
∑

j=1

βjyj

=
m

∑

i=1

n
∑

j=1

(αiβj)(xi − yj)

where
m
∑

i=1

n
∑

j=1

(αiβj) = (
m
∑

i=1

αi)(
n
∑

j=1

βj) = 1 and αiβj ≥ 0.

However, we do not want to solve an NPP by solving

an equivalent MNP with the difference vectors since the

number of difference vectors can be huge (there are mn
such vectors).

Many algorithms have been proposed and studied for MNP

and for NPP. Gilbert’s algorithm [5] is one of the first

algorithms for solving MNP. Several years later, Mitchell,

Dem’yanov, and Malozemov suggested a new algorithm (the

MDM Algorithm [11]). The MDM algorithm works faster

than Gilbert’s algorithm. The main reason is that Gilbert’s

algorithm tends to zigzag more when it approaches the

solution. Another popular algorithm for solving NPP is the

GJK algorithm (Gilbert, Johnson, and Keerthi [6]).

Modifications and improvements have been made on

Gilbert’s algorithm, the MDM algorithm, and the GJK

algorithm, and adaptations have been proposed for other

problems such as support vector machines. See, for example,

Cameron [1], Chang, Qiao, Wan, and Keane [3], Keerthi et

al. [7], and Martin [9].

Our proposed algorithm is based on the MDM algorithm.

A novel idea used in the new algorithm is that an approx-

imation uk ∈ U to u∗ and an approximation vk ∈ V
to v∗ are calculated alternatively at each iteration, where

(u∗, v∗) is a solution to (NPP). Convergence is proved and

numerical results are reported to compare with some existing

methods. For randomly generated data sets, our algorithm is

more efficient than some of the best available algorithms and

implementations, in particular when the number of points and

the dimensions are large.

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

WeB04.5

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 1189

The rest of the paper is organized as follows. In Section

II, we briefly review some exciting algorithms and their

modifications and improvements. We introduce the new

algorithm and show its convergence in Section III. Numerical

results are presented in Section IV, and finally Section V has

some conclusion remarks.

II. SOME EXISTING WORK

In this section, we briefly review some existing algorithms

and their modifications and improvements. We use < ·, · >
to denote the common inner product in ℜl. The common

2-norm is defined by

‖ · ‖ =
√
< ·, · >.

Suppose we wish to find u∗ ∈ U such that

‖u∗‖ = min{ ‖u‖ : u =

m
∑

i=1

αixi }.

We assume ‖u∗‖ > 0 for MNP and ‖u∗− v∗‖ > 0 for NPP.

A. Gilbert’s Algorithm

Gilbert’s algorithm was one of the first algorithms for

MNP. It locates the point on a convex hull closest to the

origin using a piecewise linear path. We may describe the

algorithm as follows.

Let P be the convex hull of a set of points in ℜl. Let

z∗ ∈ P denote the point with least norm. Define mappings

hP and gP by

hP (η) = max{< η, z > : z ∈ P }

and

gP (η, p) = hP (η)− < η, p >, p ∈ P.

Let sP (η) ∈ P satisfy

< sP (η), η >= max{< η, z > : z ∈ P }.

Gilbert’s Algorithm for Solving MNP

0) Choose z ∈ P .

1) Compute hP (−z) and gP (−z, z). If gP (−z, z) = 0 stop

with z∗ = z; else set z̄ = sP (−z).
2) Compute z̃, the point on the line segment joining z and

z̄ which has least norm. Set z = z̃ and go to Step 1).

Gilbert showed that z converges to z∗ asymptotically if

the algorithm does not stop at Step 1) within a finite number

of iterations. However, the asymptotic behavior exhibited by

the algorithm is slow because of zigzagging.

B. The MDM Algorithm

Several years after Gilbert’s work, Mitchell et al. suggested

a new algorithm for solving MNP (in 1974) [11]. Their

original work was actually published in 1971 in Russian [10].

The MDM algorithm is also simple to describe.

The MDM Algorithm for Solving MNP

0) Initialize k = 0 and select u0 ∈ U .

1) Let the representation of uk be

uk =

m
∑

i=1

α
(k)
i xi.

If uk satisfies the stopping criterion, stop.

2) Determine x̃ik
and xik

(among the points xi) that satisfy

< x̃ik
, uk >= max

α
(k)
i

>0

{< xi, uk > },

< xik
, uk >= min

1≤i≤m
{< xi, uk > }.

3) Let α̃ik
be the coefficient of x̃ik

in the representation

of uk. Consider the segment

φk(s) = uk + s α̃ik
(xik

− x̃ik
).

Let sk ∈ [0, 1] satisfy

< φk(sk), φk(sk) >= min
s∈[0,1]

{< φk(s), φk(s) > }.

Update uk by

uk+1 = uk + skα̃ik
(xik

− x̃ik
).

4) Update k := k + 1. Go back to Step 1).

The MDM algorithm is similar to Gilbert’s algorithm in

that both algorithms first choose a descent search direction

then find the point with minimum norm on a line segment

along that direction. They differ however, on the choice of

the search direction. Suppose uk is the current approximation

to the solution. Gilbert’s algorithm uses the direction from

uk to one of the xi that has the least projection on uk (among

all xi), while the MDM algorithm chooses the direction from

one of the xi that has maximum projection on uk (among the

xi corresponding to nonzero coefficients in the representation

of uk) to one of the xi that has the least projection on uk

(among all xi).

It has been observed that the MDM algorithm converges

faster than Gilbert’s algorithm. As pointed out in [7], the

MDM algorithm tries to crush the total slab toward zero

while Gilbert’s algorithm only attempts to push the lower

slab to zero. Our proposed algorithm is based on the MDM

algorithm.

Modifications and improvements have been suggested on

Gilbert’s algorithm and the MDM algorithms. Adaptations

have been made for other problems such as support vector

machines (SVM). For example, Keerthi et al. [7] proposed a

hybrid algorithm using both Gilbert’s idea and the MDM al-

gorithm. Keerthi’s algorithm also applies to SVM problems.

Purely based on Gilbert’s algorithm, Martin [9] suggested

a modification for SVM. Both Keerthi and Martin achieved

remarkable improvement over the original algorithms, even

when applied to SVM problems. Chang et al. made an

interesting observation that Gilbert’s algorithm would zigzag

among the support vectors at the final stage of convergence.

They suggested a strategy that improved the performance of

Gilbert’s algorithm quite significantly for solving MNP.

Another closely related algorithm is the GJK algorithm

(Gilbert et al. [6]). It is particularly popular in the field of

WeB04.5

1190

robotics. We refer to interested readers the original paper [6]

and a later modification by Cameron [1].

We would like to point out that both Gilbert’s algorithm

and the MDM algorithm can be adapted to solve NPP even

though they are designed for MNP, see, e.g., Keerthi et al.

[7].

III. THE NEW ALGORITHM FOR NPP AND ITS

CONVERGENCE

Let u∗ ∈ U and v∗ ∈ V solve NPP. Then the cor-

responding difference vector w∗ = u∗ − v∗ will solve

the equivalent MNP using the difference vectors xi − yj

(i = 1, 2, . . . ,m, j = 1, 2, . . . , n). Let the representations

of u∗ and v∗ be

u∗ =

m
∑

i=1

α∗
i xi and v∗ =

n
∑

j=1

β∗
j yj .

An important feature of NPP (and MNP) is that for many

such problems, most α∗
i and β∗

j are zero in the representation

of the solution. The xi and yj corresponding to nonzero

α∗
i and β∗

j are called support vectors in the support vector

machine (SVM) terminology.

One could solve an NPP by forming the difference vectors

xi − yj (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) and solving the

reformulated MNP. However, this is sensible only if m or n
is extremely small, say, m = 1 or n = 1, since the number

of difference vectors is mn which can be prohibitively large.

Keerthi et al. [7] showed how to solve an NPP without

forming the difference vectors.

One novel idea used in our algorithm is that at each itera-

tion, an approximation uk ∈ U to u∗ and an approximation

vk ∈ V to v∗ are calculated alternatively, using the difference

vectors xi − yj only when they are needed. The number of

such used pairs will usually be very small comparing with

mn. In addition, once uk has been updated to uk+1, the new

approximation uk+1 will be used to update vk . Using newer

information often accelerates convergence. Our algorithm

can be described as follows.

Our Algorithm for Solving NPP: Algorithm ALT-MDM

0) Initialize k = 0 and select u0 ∈ U and v0 ∈ V .

1) Let the representation of uk and vk be

uk =
m
∑

i=1

α
(k)
i xi and vk =

n
∑

j=1

β
(k)
j yj .

If uk and vk satisfy the stopping criterion, stop.

2) Determine x̃ik
and xik

(among the points xi) that satisfy

< x̃ik
, uk − vk >= max

α
(k)
i

>0

{< xi, uk − vk > },

< xik
, uk − vk >= min

1≤i≤m
{< xi, uk − vk > }.

3) Let α̃ik
be the coefficient of x̃ik

in the representation

of uk. Consider the segment

φk(s) = uk + s α̃ik
(xik

− x̃ik
).

Let sk ∈ [0, 1] satisfy

< φk(sk), φk(sk) >= min
s∈[0,1]

{< φk(s), φk(s) > }.

Update uk by

uk+1 = uk + skα̃ik
(xik

− x̃ik
).

4) Determine ỹjk
and yjk

(among the points yj) that satisfy

< ỹjk
, vk − uk+1 >= max

β
(k)
j

>0

{< yj , vk − uk+1 > },

< yjk
, vk − uk+1 >= min

1≤j≤n
{< yj, vk − uk+1 > }.

5) Let β̃jk
be the coefficient of ỹjk

in the representation

of vk. Consider the segment

ψk(t) = vk + t β̃jk
(yjk

− ỹjk
).

Let tk ∈ [0, 1] satisfy

< ψk(tk), ψk(tk) >= min
t∈[0,1]

{< ψk(t), ψk(t) > }.

Update vk by

vk+1 = vk + tkβ̃jk
(yjk

− ỹjk
).

6) Update k := k + 1. Go back to Step 1).

Our algorithm updates uk and vk alternatively in U and

V . The main idea is that when updating uk to uk+1, the

updating strategies used in the MDM algorithm are applied

by treating vk as the origin. Similarly, when updating vk to

vk+1, the same strategies are applied by treating uk+1 as the

origin.

The main computational cost of the algorithm is on

evaluating the inner products to determine x̃ik
, xik

, ỹjk
, and

yjk
. When m, n, and l are large which is the case for some

application problems, directly evaluating the inner products

for every new uk and vk can be very costly. Following the

idea used in Platt [12] and Keerthi et al. [7], we calculate

the inner product < xi, yj > only when it appears, and we

cache all calculated inner products for later use. The inner

product < xi, uk − vk > or < yj , vk − uk+1 > will never

be directly evaluated. Instead, these inner products will be

evaluated by using the representations of uk, uk+1, and vk

in xi and yj and the inner products between xi and yj .

We now turn to the convergence of the algorithm. The

proofs follow quite nicely with the line in Mitchell et al.

[11]. We omit the details of the proofs for most lemmas and

theorems here because of their length. Interested readers may

find the detailed proofs in [4].

The following result can be seen immediately.

Lemma 1: ‖uk+1 − vk+1‖ ≤ ‖uk+1 − vk‖ ≤ ‖uk − vk‖.
Following Mitchell et al. [11], we first define some nota-

tions. For the sake of convenience, we may omit the iteration

index k when there is no confusion. Let u ∈ U and v ∈ V .

Define

δx(u, v) =< u, u− v > −min
i
< xi, u− v >, (1)

δy(u, v) =< v, v − u > −min
j
< yj, v − u >, (2)

δ(u, v) = δx < u, v > +δy < u, v >, (3)

WeB04.5

1191

∆x(u, v) = max
αi>0

< xi, u− v > −min
i
< xi, u− v >, (4)

∆y(u, v) = max
βj>0

< yj , v − u > −min
j
< yj , v − u >, (5)

∆(u, v) = ∆x(u, v) + ∆y(u, v). (6)

Geometrically, δx(u, v) is the difference between the pro-

jection of u on u − v and the smallest projection of xi on

u − v, while ∆x(u, v) is the difference between the largest

projection of the xi corresponding to nonzero coefficients in

the representation of u on u− v and the smallest projection

of xi on u− v. Similar interpretations apply to δy(u, v) and

∆y(u, v). Since u is a convex combination of xi and v is a

convex combination of yj , we have

Lemma 2:

∆x(u, v) ≥ δx(u, v) ≥ 0,

∆y(u, v) ≥ δy(u, v) ≥ 0.

The first theorem gives a necessary and sufficient condition

for u ∈ U and v ∈ V to be a solution of NPP.

Theorem 1: A pair u ∈ U and v ∈ V solves NPP iff

∆(u, v) = δ(u, v) = 0.

Proof: For a detailed proof, please see [4]. We can

intuitively see that (u, v) is a solution to NPP iff the smallest

projection of xi on u − v is the same as the projection of

u on u − v, and the smallest projection of yj on v − u is

the same as the projection of v on v− u. In other words, iff

δ(u, v) = 0. Similar arguments can be made for ∆(u, v).

The next two lemmas will be used for proving a major

convergence theorem.

Lemma 3: The step lengths sk and tk used in Step 3 and

Step 5 can be expressed as

sk = min{1, ∆x(uk, vk)

α̃ik
‖xik

− x̃ik
‖2 },

tk = min{1, ∆y(uk+1, vk)

β̃jk

∥

∥yjk
− ỹjk

∥

∥

2 }.

Proof: This can be seen by direct computation, using

the fact that both the inner products < φk(s), φk(s) > and

< ψk(t), ψk(t) > are convex quadratic functions in s and t,
respectively.

Lemma 4:

lim
k→∞

(α̃ik
∆x(uk, vk) + β̃jk

∆y(uk, vk)) = 0. (7)

Proof: Please see [4].

A major convergence theorem is the following.

Theorem 2:

lim
k→∞

δ(uk, vk) = 0. (8)

Proof: Please see [4].

To establish the convergence theorem, we need one more

lemma.

Lemma 5: Suppose {uk ∈ U , vk ∈ V } is a sequence

that satisfy ‖uk+1 − vk+1‖ ≤ ‖uk − vk‖ and there is a

subsequence that satisfy δ(ukj
, vkj

) → 0. Then the sequence

{uk − vk} converges to u∗ − v∗ where u∗ ∈ U and v∗ ∈ V
solve NPP.

Proof: Please see [4].

Now we are ready to state the convergence result. Our

algorithm is named Algorithm ALT-MDM.

Theorem 3: The sequence {uk−vk} generated by Algo-

rithm ALT-MDM converges to u∗ − v∗ where u∗ ∈ U and

v∗ ∈ V solve NPP.

Proof: It follows from Lemma 1, Theorem 2, and

Lemma 5.

We note that there is no need to show the convergence of

{uk} or {vk} since we maintain uk ∈ U and vk ∈ V for all

k. In addition, the solution to NPP is not unique in general,

though MNP has a unique solution. Once a stopping criterion

is satisfied, uk ∈ U and vk ∈ V will be an approximate

solution to NPP.

The following result is geometrically interesting, in par-

ticular in view of support vector machines.

Theorem 4: Let u∗ ∈ U and v∗ ∈ V be a solution to

NPP. Let

U∗ = { u ∈ U :< u, u∗ − v∗ >=< u∗, u∗ − v∗ > }, (9)

V ∗ = { v ∈ V :< v, v∗ − u∗ >=< v∗, v∗ − u∗ > }. (10)

Then uk ∈ U∗ and vk ∈ V ∗ for all k sufficiently large.

Proof: Please see [4].

The sets U∗ ⊂ U and V ∗ ⊂ V are two facets that are

parallel and are the convex hulls generated by all support

vectors. Any u ∈ U∗ and v ∈ V ∗ will be a solution to NPP

if u− v is perpendicular to U∗ or V ∗. Theorem 4 says {uk}
and {vk} will eventually land on U∗ and V ∗, respectively

and stay there.

IV. NUMERICAL EXPERIMENTS

In this section, we compare our algorithm ALT-MDM with

one of the best algorithms, the sequential minimization op-

timization algorithm (SMO) by Platt [12]. More specifically,

we compare with one of the best SMO-type implementation

packages, LIBSVM (Version 2.85), by Chang and Lin [2].

We implemented our algorithm in Matlab, running on a

Pentium 4 desktop. Our algorithm may run more efficiently

if implemented in C or Fortran.

The numerical experiments were conducted on randomly

generated data. We use m and n to denote the number of

points in X and Y , and use l to denote the dimension of those

points. Once m, n, and l are given, we use the Matlab func-

tion rand to generate X = rand(m, l). ∗ exp(rand(m, l))
and Y = −rand(n, l). ∗ exp(rand(n, l)), where Row i of

X is xi (1 ≤ i ≤ m) and Row j of Y is yj (1 ≤ j ≤ n).
For each case, five problems were generated and solved by

both LIBSVM and ALT-MDM. We report the average CPU

time (in seconds) for the five problems.

WeB04.5

1192

The test problems are all linearly separable due to the way

they are generated. We use LIBSVM with linear kernel and

set the parameters −c as 1010 and −e as 10−10. We stop

ALT-MDM when

∆(uk, vk) ≤ 10−10.

It turns out that LIBSVM and ALT-MDM always identify the

same support vectors for these randomly generated problems,

and the difference between the minimum values found by the

two algorithms is within 10−9.

We now present a few figures. Again m is the number

of points in X , n is the number of points in Y , and l is

the dimension. For given m and n, we use four l values:

l = (1/4)n, (1/2)n, (3/4)n, n.

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
P

U
 S

e
c
o
n
d
s

Length of Vectors (m=500, n=500)

o−−−o LIBSVM

+−−−+ ALT−MDM

Fig. 1. Compare ALT-MDM with LIBSM: m = n = 500

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
P

U
 S

e
c
o
n
d
s

Length of Vectors (m=1000, n=1000)

o−−−o LIBSVM

+−−−+ ALT−MDM

Fig. 2. Compare ALT-MDM with LIBSM: m = n = 1000

From Figure 1, we see that LIBSVM outperforms ALT-

MDM when m and n are relatively small. However, Figures

2, 3, 4, and 5 show that when m and n are relatively large

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

C
P

U
 S

e
c
o

n
d

s

Length of Vectors (m=2000, n=2000)

o−−−o LIBSVM

+−−−+ ALT−MDM

Fig. 3. Compare ALT-MDM with LIBSM: m = n = 2000

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

C
P

U
 S

e
c
o
n
d
s

Length of Vectors (m=3000, n=3000)

o−−−o LIBSVM

+−−−+ ALT−MDM

Fig. 4. Compare ALT-MDM with LIBSM: m = n = 3000

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

C
P

U
 S

e
c
o
n
d
s

Length of Vectors (m=3000, n=1000)

o−−−o LIBSVM

+−−−+ ALT−MDM

Fig. 5. Compare ALT-MDM with LIBSM: m = 3000, n = 1000

WeB04.5

1193

(m,n ≥ 1000), ALT-MDM outperforms LIBSVM, and the

margin grows with the dimension. It indicates that ALT-

MDM may have good potential for solving large scale data

classification problems.

V. CONCLUSIONS

We have presented a new algorithm based on the MDM al-

gorithm. A novel idea is that the updating strategy is applied

alternatively to uk ∈ U and vk ∈ V , and newer information

is used once it is available. Numerical experiments show

that our algorithm outperforms some of the best available

algorithms on randomly generated data, in particular when

the size of problems grows. Since such inner-product based

algorithms can be easily adapted for SVM problems, the new

algorithm may have considerable potential for SVM. We plan

to implement the new algorithm with kernel functions and

test it using benchmark SVM problems. The result will be

presented in a future report.

VI. ACKNOWLEDGMENTS

The authors thank Robert Kallman, John Neuberger, and

Xiaohui Yuan for their helpful comments, and thank the

referees for many constructive suggestions.

REFERENCES

[1] S. Cameron, “Enhancing GJK: computing minimum and penetration
distances between convex polyhedra”, Proceedings of the Int. Conf.

Robotics and Automation, 1997.
[2] C. C. Chang and C.J. Lin, LIBSVM: A Library for

Support Vector Machines, (software available at http :

//www.csie.ntu.edu.tw/˜cjlin/libsvm), 2001.
[3] L. Chang, H. Qiao, A. Wan, and J. Keane, “An Improved Gilbert

Algorithm with Rapid Convergence”, Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 3861-
3866, 2006.

[4] K. Dougsoo and J. Liu, “A Geometric Algorithm for Finding the
Minimum Distance Between Two Convex Hulls”, manuscript, 2009.

[5] E. G. Gilbert, “Minimizing the quadratic form on a convex set”, SIAM

J. Contr., vol. 4, pp. 61-79, 1966.
[6] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for

computing the distance between complex objects in three dimensional
space”, IEEE J. Robot. Automat., Vol. 4, pp. 193-203, 1988.

[7] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“A fast iterative nearest point algorithm for support vector machine
classifier design”, IEEE Trans. Neural Networks, vol. 11, pp. 124-136,
2000.

[8] S. R. Lay, Convex Sets and Their Applications, New York: Wiley,
1982.

[9] S. Martin, “Training support vector machines using Gilbert’s algo-
rithm”, Proceedings of the Fifth IEEE International Conference on

Data Mining, 2005.
[10] B. F. Mitchell, V. F. Dem’yanov, and V. N. Malozemov, “Finding the

point of a polyhedron closest to the origin”, Vestinik Leningrad. Gos.

Univ., Vol. 13, pp. 38-45, 1971 (in Russian).
[11] B. F. Mitchell, V. F. Dem’yanov, and V. N. Malozemov, “Finding the

point of a polyhedron closest to the origin”, SIAM J. Contr., vol. 12,
pp. 19-26, 1974.

[12] J. Platt, “Fast training of support vector machines using sequential
minimal optimization”, in Advances in Kernel Methods - Support

Vector Learning, B. Scholkopf, C. J. C. Burges, and A. J. Smola,
editors, MIT Press, pp. 185-208, 1999.

WeB04.5

1194

